
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 6; April-June, 2015 pp. 569-572
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

An Architectural Approach to Forestalling Code
Injection Attacks

Ayushi Chaudhary1 and Gaurav Rajuara2
1,2Dept. of Computer Science and Engineering Galgotias College of Engineering and Technology Greater Noida, India

E-mail: 1ayushichaudhary24@yahoo.com, 2rajaura.gaurav@gmail.com

Abstract—Network security policies offers no protection against
attacks which do not rely on executing code injected by the attacker.
The existing system follows von Neumann architecture, in which the
memory cannot split into several segments. To forestall the code
injection attack, the memory architecture is changed by virtually
Splitting it into two segments i.e. code segment and data segment.
The change in architecture does not allow the intruder to take charge
of the injected code, as the injected code remains no executable. The
split memory technique follows Harvard Architecture. Also, Address
space layout randomization is followed, where the data are stored in
various locations and not as whole in a single memory location. The
intruder or an attacker can be tracked by knowing their location, IP
address, date and time of the attack etc, that are not available in the
existing system. In this paper we introduce the code Injection
technique for displaying the user content in the memory according to
the content split into number of intruder’s information. Our proposed
technique also implements URL based attacks in the memory content
of the users.

Keywords: URL based attacks, Memory split, Code injection Attack,
Randomization.

1. INTRODUCTION

Code injection method can be used by an attacker to describe
code into a computer program to change the course of code
injection of execution. The results of a code injection attack
can be disastrous.

For instance, code injection is used by some computer worms
to propagate.

Remote File Inclusion (RFI) is a type of vulnerability most
often found on websites. It allows an attacker to include a
remote file, usually through a script on the web server. The
vulnerability occurs due to the use of user-supplied input
without proper validation. This can lead to something as
minimal as outputting the contents of the file, but depending
on the severity. The existing system follows von Neumann
architecture. Where the memory cannot split into several
segments. This type of technique allows the intruder to inject
the code in the single segment and executes it. The intruder
takes control of the entire code running in the system and it
grants access to modify the data and perform activities without
the knowledge of the authorized users. Also address space

layout randomization is not possible, the entire data are stored
in the single address space, and it allows the third party
member to obtain all the valuable information, which is being
stored in the database.[1]

Most of the web applications are addicted towards code
injection attacks. Data is injected by an intruder or an attacker
and that third person takes control of the entire system thus
leading to loss of secured data and also malfunctioning of the
entire system. If the system is attacked, the attacker is not
known by the administrator and the person remains invincible.
This leads to many disorders in the web applications.

Code injection attacks can be prevented by virtual splitting of
memory i.e. code segment and the data segment. It is based on
Harvard Architecture. The memory space is allocated in such
a way that the code and data segment of the system are stored
separately. The injected code remains in the data segment and
it will not be executed as it makes unavailable for the
processor during the instruction fetch from the memory. Also,
the tracking facility enables the administrator to detect the
intruder with their IP address, system name, path, location etc.
It allows the administrator to take necessary action on the
intruder.[2-3]

Code injection can be prevented with Address space layout
randomization phase, preventing code injection phase. In this
intruders attack by means of URL is prevented by ASLR
phase. The intruders can’t guess by means of the URL
displayed in the Address bar. In the code injection prevention,
the system will run code only when it is inserted from the
Administrators IP address and host name. Thus intruder’s code
is not executed and prevented from huge disaster to the
website.

2. RELATED WORK

Research on code injection attacks has been ongoing for a
number of years now, and a large number of protection
methods have been researched and tested. There are two
classes of techniques that have become widely supported in
modern hardware and operating systems; one is concerned
with preventing the execution of malicious code after control

Ayushi Chaudhary and Gaurav Rajuara

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 6; April-June, 2015

570

flow hijacking, while the other is concerned with preventing
an attacker from hijacking control flow. The first class of
technique is concerned with preventing an attacker from
executing injected code using no executable memory pages,
but does not prevent the attacker from impacting program
control flow.

This protection comes in the form of hardware support or a
software only patch. Hardware support has been put forth by
both Intel and AMD that extends the page-level protections of
the virtual memory subsystem to allow for non-executable
pages. (Intel refers to this as the “execute-disable bit”.[4] The
usage of this technique is fairly simple: Program information
is separated into code pages and data pages. The data pages
(stack, heap, bss, etc) are all marked no executable. At the
same time, code pages are all marked read-only. In the event
an attacker exploits a vulnerability to inject code, it is
guaranteed to be injected on a page that is nonexecutable and
therefore the injected code is n ever run. Microsoft makes use
of this protection mechanism in its latest operating systems,
calling the feature Data Execution Protection (DEP). This
mediation method is very effective for traditional code
injection attacks, however it requires hardware support in
order to be of use. Legacy x86 hardware does not support this
feature. This technique is also available as a software-only
patch to the operating system that allows it to simulate the
execute-disable bit through careful mediation of certain
memory accesses. PAX PAGEEXEC is an open source
implementation of this technique that is applied to the Linux
kernel. It functions identically to the hardware supported
version, however it also supports legacy x86 hardware due to
being a software only patch.

3. EXISTING SYSTEM

To forestall the code injection attack, the memory architecture
is changed by virtually Splitting it into two segments i.e. code
segment and data segment. The change in architecture does
not allow the intruder to take charge of the injected code, as
the injected code remains no executable. The split technique
follows Harvard Architecture[9,10]. Also, Address space
layout randomization is followed, where the data are stored in
various locations and not as whole in a single memory
location. The intruder or an attacker can be tracked by
knowing their location, IP address, date and time of the attack
etc, that are not available in the existing system

Von Neumann architecture

4. PROPOSED SYSTEM

To understand how the most basic shell injection might work,
imagine a simple case. A custom script is needed to display
file contents to users, but the development team doesn't want
to spend time writing a procedure to read the files. Instead,
they decide to allow users to specify a file, then use the Unix
command cat to display the results.[5-8]

Harvard architecture

Algorithm:
Split Memory Page Fault Handler

5. AUTHENTICATION PHASE

This is the first module of all applications which contains the
user registration and login and administrator’s login. In the
previous stages, an unknown user also can block the valid user
account without knowing the password of the account holder.
This is one type of intruder. In the first phase if the user
wrongly types the password simultaneously (more than 3
times) then the login will be transferred to a temporary (fake)
account page. The intruder does not know that he is in a fake
page as it resembles original page.[9]

6. ADDRESS SPACE INTRUSION AVOIDANCE
PHASE

Address space layout randomization could be combined with
this phase to prevent the URL based attacks. Even if the

An Architectural Approach to Forestalling Code Injection Attacks 571

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 6; April-June, 2015

intruder attacks the system through URL the control will not
be granted to the intruder. If the intruder wants to move to
next page after the authentication through URL the user
remains in the same address, but the page that is being
displayed will be different.[10]

7. PREVENTING CODE INJECTION PHASE

When the intruder tries to modify any data or create any
malicious event, the intruder is not permitted to perform the
activities since intrusion is done with unauthorized user name
and password. If the changes are done with unauthorized
access then the information of the intruder are gathered and it
is being sent to the administrator in the secure manner.

EMPERICAL RESULT

In this section we describe the two consecutive terms of URL
based attack detection. Input design is the process of
converting the user oriented input to the computer oriented
format. Authentication module is used to log in to the system
and perform the operations. Split memory module is used to
separate the code and the data segment. Preventing code
injection module helps the administrator to know the details of
the intruder. The details are collected and it is stored in the
database. Output design generally refers to the results and
information that are generated by the system for many end-
users; output is the main reason for developing the system and
the basis on which they evaluate the usefulness of the
application. In this system, with the authenticated user name
and password, the user can perform the operations without any
restrictions. If the users want to update the data or transfer the
amount, the action can be done successfully, where as if the
intruder logs in without knowing the password or user name
there by giving false details more than three times, the intruder
is redirected towards a fake page where the details of the
intruder can be tracked. Also when an attacker wants to update
any data, the updation is done only temporarily and it is not
stored or updated in the database.

 To the third person the transaction is restricted and on
clicking the ‘view details’ only fake details are displayed.
Thus any attack performed by the third person is blocked or
restricted. The attacker may probably corrupt various parts of
a program’s memory space. Due to the fact that the operating
system doesn’t understand the working of the running
program, it would be infeasible for it to attempt any sort of
recovery that would permit the application to continue
running. It may be much more feasible, for the application
itself to register a call-back function or a special signal handler
that the operating system could transfer execution to in the
event an attack is detected. In our approach above mentioned
problems can be discussed in the malicious attackers.

Assume for a moment that you have found the previous
examples page, which takes as an argument a filename as
input and executes the shell command "cat" against that file.
In the previous example, a semicolon was used to separate out

one command form another, to indicate that after the cat
command completed, another function should be called in the
same line. It is reasonable to assume that a more advanced
developer might have filtered out some forms of shell
injection, such as by removing semicolons, rendering the
previous attack ineffective. There are a number of ways to
string shell commands together to create new commands. Here
are the common operators you can use, as well as examples of
how they might be used in an attack:

1- before the attacker injects the code

2- injection to the data page

3-the execution get routed to instruction page

LIMITATIONS

There are a few limitations to our approach. First, when an
attack is stopped by our system the process involved will
crash. We offer no attempt at any sort of recovery. This means
an attacker can still exploit flaws to mount denial-of service

Ayushi Chaudhary and Gaurav Rajuara

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 6; April-June, 2015

572

attacks. Second, as shown in other work[15], a split memory
architecture does not lend itself well to handling self-
modifying code. As such, self-modifying programs cannot be
protected using our technique. Next, this protection scheme
offers no protection against attacks which do not rely on
executing code injected by the attacker. For example,
modifying a function’s return address to point to a different
part of the original code pages will not be stopped by this
scheme. Fortunately, address space layout randomization
[11,12,13,14] could be combined with our technique to help
prevent this kind of attack. Along those same lines, non
control- data attacks, wherein an attacker modifies a
program’s data in order to alter program flow, are also not
protected by this system. We have also not analyzed the
system’s functionality on programs that include dynamically
loadable modules (such as DLL files on windows) but do not
anticipate that such programs would be difficult to support.

8. CONCLUSION

In this paper, we present an architectural approach to prevent
code injection attacks. Instead of maintaining the traditional
single memory space containing both code and data ,which is
often exploited by code injection attacks, our approach creates
a split memory that separates code and data into different
memory spaces. Consequently, in a system protected by our
approach, code injection attacks may result in the injection of
attack code into the data space. However, the attack code in
the data space can not be fetched for execution as instructions
are only retrieved from the code space.

9. FUTURE ENHANCEMENT

One common problem with interceding during an attack is that
while the attacker has not successfully executed his malicious
code, the attacker may probably corrupt various parts of a
program’s memory space. Due to the fact that the operating
system doesn’t understand the working of the running
program, it would be in feasible for it to attempt an y sort of
recovery that would permit the application to continue
running. It may be much more feasible, for the application
itself to register a call-back function or a special signal handler
that the operating system could transfer execution to in the
event an attack is detected. This require changes to the existing
applications and would need to investigate in future work.

REFRENCES

[1] https://www.golemtechnologies.com/articles/shell-injection
[2] Technet.microsoft.com/emus/library/cc723564.aspx,Feb 1, 2001
[3] https://www.golemtechnologies.com/articles/shell-injection Oct

9, 2011.
[4] Doi.ieeecomputersociety.org/10.1109/TDSC.2010.1 by R Riley-

2010 - Cited by 26 -Related articles Dec 15, 2010.
[5] Ryan Riley, Xuxian Jiang, Dongyan Xu,”An Architectural

Approach to PreventingCode Injection Attacks”, Nov 2010.

[6] A detailed description of the data execution prevention(dep)
feature in windows xp service pack 2, windows xp tablet pc
edition 2005, and windows server 2003. http:
//support.microsoft.com/kb/875352. Last accessed Dec 2006.

[7] Pax pageexec documentation.http://pax.
grsecurity.net/docs/pageexec.txt. Last accessed Dec 2006.

[8] I. Corporation. IA-32 Intel Architecture Software Developer’s
Manual Volume 3A: System Programming Guide, Part 1. Intel
Corp., 2006. Publication number 253668

[9] H. H. Aiken. Proposed automatic calculating machine.1937.
Reprinted in The Origins of Digital Computers Selected Papers,
Second Edition, pages 191–198, 1975.

[10] H. H. Aiken and G. M. Hopper. The automatic sequence
controlled calculator. 1946. Reprinted in The Origins of Digital
Computers Selected Papers, Second Edition, pages 199–218,
1975.

[11] Pax aslr documentation. http://pax.grsecurity.net/docs/aslr.txt.
Last accessed Dec 2006.

[12] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address
Obfuscation: An Efficient Approach to Combat a Broad Range
of Memory Error Exploits. 12th USENIX Security, 2003.

[13] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient Techniques
for Comprehensive Protection from Memory Error Exploits.
14th USENIX Security, 2005.

[14] J.Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent Runtime
Randomization for Security. In Proc. of 22nd Symposium on
Reliable and Distributed Systems (SRDS) ,
Florence,Italy,Oct.2003.

[15] J.Giffin, M. Christodorescu, and L. Kruger. Strengthening
software self-checksumming via self-modifying code. In
Proceedings of the 21st Annual Computer Security Applications
Conference (ACSAC 2005), pages 18–27, Tucson,
AZ,USA,Dec.2005.AppliedComputerAssociates,IEEE

